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V: : Abstract. An m x m symmetric nonnegative definite matrix E has Cholesky factorization E =
UTU. By carrying out the factorization in a particular way for positive definite E, the Schur
complements of all the leading principal submatrices of D are produced, as well as their Cholesky
factors. It is shown how the same can be done for generalized Schur complements when E is
singular. When E is the population covariance matrix of a multivariate random distribution, partial
covariances and correlations can be defined in terms of the elements of such Schur complements.
It follows that these can be produced efficiently and reliably from the Cholesky factorization.

When n x m A is given and E = ATA, the Cholesky factor U may be found directly from the
QR factorization A = Q1 U, QTQ1 - I, and this is preferable in many numerical computations.
This QR factorization, or the modified Gram-Schmidt orthogonalization, produces projections of
later columns of A onto spaces orthogonal to earlier columns. It is shown how the cosines of
the angles between such projected vectors can be found using the elements of U. These cosines

produced from A turn out to be the previously mentioned partial correlation coefficients produced
from E, when E = ATA. When A is obtained from observations of random variables, these are
the sample correlation coefficients. It is shown how such correlation coefficients can be efficiently
obtained when observations are added or deleted. This corresponds to altering all of A in a certain
simple way, and adding or deleting rows.

SELEcTE8
tMAR2 4 19

The Cholesky Factorization, Schur Complements,
Correlation Coefficients, Angles between

Vectors, and the QR Factorization

J.-M. Delosme', I.C.F. Ipsen2 , C.C. Paige'

Research Report YALEU/DCS/RR-607
February 1988

1 Department of Electrical Engineering, Yale University
~ 2 Department of Computer Science, Yale University

3 Department of Computer Science, McGill University, Montreal, Canada

The work presented in this paper was supported by the National Science Foundation under
,a .contract ECS-8314750, by the Office of Naval Research under contract N000014-86-K-0310 and

N00014-85-K-0461, by the Army Research Office under contract DAAL03-86-K-0158, and by the
Natural Sciences and Engineering Research Council of Canada under grant A9236. Approved for
public release: distribution is unlimited.



-• .Notation

We will be dealing with vectors and matrices in their own right, as well as treating them
as statistical objects. Because of the very different notation used in econometrics, statistics, and
other areas which use matrix theory, we will use a standard notation of matrix theory and describe
the convention we use within this for representing statistical objects. We describe these fully for
possibly different audiences.

Matriz Theory Notation. Upper case greek and italic letters, like E and A, will denote matrices;
lower case italics, like ai and x, will denote vectors; except that i, j, k, m, n, p, q, r, a, t will
represent integers or indices. Lower case greek letters will denote other scalars. Thus,

A(n x m) = (a, ... a.) =

represents an n x m matrix A with columns al,... ,a,,, and elements s,%.
A principal submatrix of E is a square submatrix whose diagonal elements are also diagonal

elements of E. A leading principal Bubmatriz of E is a principal submatrix in the top left corner of

We will make frequent use of the following notions: ET denotes the transpose of E; W" is the
real n-space and jIzi1 = ,.,/T the two-norm of a vector z. The range or image or column space
of a matrix A is denoted by R(A), and its orthogonal complement by R(A) 1 . e(a, b) is the angle
between two vectors a and b of equal dimension.

Statistical Notation. This will always follow the matrix notation above. We will use the same
notation for a random variable and an instance or observation of that variable. Thus x can represent
a random vector or an observation of this random vector, the meaning will be clear from the context.
E(x) denotes the expected value, and z - (a, E) denotes a vector x of random variables with mean a
and variance-covariance matrix (covariance for short) Z.

I. Introduction
For a given matrix

E= G H

with nonsingular E, the Schur complement of E in E, often written (/E,), is

S = (./E) = H - GE-F. (1.2)

There is an extensive literature on this, and it is a theoretical tool widely used by statisticians as
can be seen from the bibliography prepared by Ouellette 112], see also [2, 3]. Perhaps the most
common use by statisticians of the Schur complement occurs when E is a symmetric positive definite
covariance matrix, and the Schur complement of a principal submatrix is required. In this case
there is a simple relation between Schur complements and Cholesky factors. Suppose we partition
the matrices

9,,, £ -(Eu £12 UTU~ (YUT 0 ( 1  Ui22 1 ,(.) rE2 £22 U12  22/ ) ( 21 )I C
where U is the upper triangular Cholesky factor of E. It follows that COPY

S = (E/£) = 2 - n1U)-U12 Dwe14

22~U22 + 12U 12  12 1j'iiUji)IU1 2 (1.4) _
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*,. \so that the Cholesky factor of a symmetric positive definite E not only provides the Cholesky
factors of all the leading principal submatrices Ell = UT Uln of E, but also the Cholesky factors
of the Schur complements of all the leading principal submatrices (E/E 11 ) = U22Un in E. By
permuting rows, and permuting columns in the same way, any principal submatrix can be made a
leading principal submatrix, and the above well known result suggests we might be able to use the
Cholesky factor and ignore the Schur complement. This is not quite true, as we now point out.

When E is the covariance matrix of a multivariate distribution, the population partial correla-
tion coefficients are defined in terms of the elements of Schur complements of principal submatrices
of E, see [1] pp. 37,41, so these Schur complements are really needed. In §2 we show that if
the Cholesky factorization is carried out in a particular order, then the Schur complements of all
leading principal submatrices occur naturally as part of the factorization; that is, without having
to form UT U22 .

When E is singular or not square in (1.1) Marsaglia and Styan [11] define a generalized Schur
complement

S = (EIE) = H - GE-F, EE-E =E. (1.5)

When E is symmetric nonnegative definite and possibly singular, this generalized Schur complement
%. is unique and symmetric nonnegative definite, and we show in §2 how it, and its Cholesky factor,
- ', occur naturally as part of a particular Cholesky factorization of E. In fact the form and the

factorization is as simple as that for the positive definite case. When it is also realized that such
algorithms for producing Cholesky factors are very efficient, and are numerically reliable when E
is positive definite (see for example [8], p. 89), and can nearly always be made reliable when E is
singular, see [9], and that results involving (generalized) Schur complements of principal submatrices
are easily derived using Cholesky factors, the argument for thinking largely in terms of Cholesky
factors becomes quite strong, especially for those interested in computations.

In §3 we discuss correlation coefficients, partial correlation coefficients, and conditional cor-
relation coefficients, and give an efficient and reliable way of obtaining these during the Cholesky
factorization of the given covariauce matrix E. Readers not interested in such statistical objects
need only note that the aim is to obtain the coefficients ^(k in (3.5), and this is done from the

4 elements , .) of E() = UTU 22 in (1.4).
The angle e(a,b) between two nonzero vectors a, b E &n is defined by

aT b
coo (a,b) = ab 0 < 0(a,b) :5 w, (1.6)

I1aI12I1bII2' eob 16

and §4 relates this to some orthogonal transformations.
It is possible that A is available where the covariance matrix is E = ATA, and §5 contains

the main theorem (Theorem 5.1) which relates the Cholesky factorization and generalized Schur
complements of E in §2, and the covariance matrices and partial correlation coefficients of §3, with
the angles between vectors arising in the QR factorization of A in §5; the initial work on this was
reported in 15]. We now expand on this.

We know that it in not generally advisable to form ATA numerically if we have A available,
and that the Cholesky factor U of E = ATA - UTU can more reliably be obtained as the upper
triangular matrix U in the QR factorization of A (see for example [8], Chapter 6)

QA UQQT =QTQJ (1.7)

A =QU, Q=(Qi Q2)

2



The question now arses as to whether the Schur complements of E, or their factors, and the
corresponding partial correlation coefficients, can be obtained directly from the QR factorization
of A. Section 5 answers this by considering how algorithms for the QR factorization of A suc-
cessively produce the orthogonal projection of ai onto the space orthogonal to a,, R((a1 a2 )),

R(( al ... ai- 1 )), for each 2 < j < in. The scalar ^() (the partial correlation of C, and

& keeping &,... ,i- fixed), i _5 j,k < m, is shown to be the cosine of the angle between the
projections of a3 and al onto R((al ... a-I ))±. It is shown how such correlations can be found
from the QR factorization of A without forming ATA or UTU. The Cholesky factors of the Schur
complements of leading principal submatrices of E = ATA can also be produced directly.

In §6 we consider the special case of having observations of random variables, and estimating
sample partial correlation coefficients from these. Thus, when zx, z2 E R' are vectors of n obser-
vations on two possibly related random variables el, and C2, and their means are subtracted to
give

a =x,- e(xe)/n, i=1,2, e=(1 ... 1 )T (1.8)

then P12 = cos (al,a2) is called the sample correlation coefficient between Cl and C2. For n
observations on each of rn such random variables ... , , the means can be subtracted to give
A. A= (a, ... a,),andif

/" '11 ... (17T

=ATA, (1.9)

the sample correlation coefficients are

=q 1/ when a $0, 1 < i,j M. (1.10)P~ 1/2 1/1 "i

The sample partial correlation coefficients are then defined in terms of the elements of the
Schur complements of principal submatrices of E, in a similar manner to the population partial
correlation coefficients mentioned earlier. Note that (n - 1)- ATA is usually taken as the estimate
for the population covariance matrix, but we will be able to ignore the scaling since correlations
are independent of scaling. By an intelligent representation of the data we show that the computed
results may be updated efficiently for certain changes in the data.

In §7 we consider the costs of computations, and how sets of partial correlation coefficients
could be computed. We illustrate the lose of accuracy caused by forming E = ATA in finite
precision when A is given, so that working with A could be important in some cases despite the
greater efficiency of working with E.

In §8 we try to summarize the various results of the paper and emphasize the relations among
them.

2. Cholesky Factors and Generalized Schur Complements
If E(m x m) is symmetric nonnegative definite it has a Cholesky factorization with upper

triangular factor U:

1. !: UTU, U0= i = " : , ,o. (2.1)

aml .. fmnU U4"

%: If E is positive definite this is unique, but if E is singular it need not be. We will make it unique
(see for example [101, p. 124) by demanding

0=J+l= - =Ai if ,=0. (2.2)

3
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Clearly the first row uT of U can be found from (2.1) and (2.2), and if we have found rows UT
UN,, we can find the ith row from E() in

E- uuTU - ... -,U,,-.,t-, ( T 0 0 (2.3)

(. 0=0 Aim ... Pin ,Am.

The particular variant of the Cholesky algorithm we are interested in then has the form, with
(1) - a ,, (note that we need only compute the upper triangular part),

Choleeky Algorithm

= 1,... m Uj , (0)1/2

k = i + 1,.. .,m k := 0 i fi otherwise (2.4)
(i+1) ,(i)

, 0 j-i+ ,...,lc 0 k := ---- . i - pk

(I) ( ki)Ji

Here, the Asik can overwrite the o,(i), and the (i+1) can overwrite the a#) Thus, the elements of

E - E1), E(2), ... , E(') - , are all formed by the algorithm. This is essentially the basic
structure of algorithm SCHDC in LINPACK, see §8 and Appendix C.99-C.102 in [6].

If we partition E as in (1.3) with (i- 1) x (i - 1) El, then from (2.3)

-,M = U22 U22 , (2.5)
and if Ell is nonsingular, (1.4) shows that E(W) is the Schur complement of E11 in E. If El is

singular a generalized Schur complement is, see (1.5), (1.1) and (1.3),

E22 - E21E = UU 2 2 + UU 1 2 - T ( 12T2 1 1 U12 , (2.6)

where Ell is any generalized inverse of Ell satisfying

E11ETIE' = - UrUll(U Ui)-UHUi,. (2.7)

But our choice (2.2) ensures in (1.3) that

R((Uu U12 )) = R(Uu), (2.8)

so U1 = UlIB 1 2 for some B12 , and substituting this in (2.6) and using (2.7) shows that (2.5) is the
generalized Schur complement of singular Ell in E.

Now from (2.8)

R((Ell E12 )) = R(U (U 1  U12 )) = R(UjU 1 )= R( ),

and this is the necessary and sufficient condition for the generalized Schur complement of El
in symmetric E to be independent of the choice of generalized inverse Ell, see for example [2],
Proposition 1. We can now summarize this result.

4

WO



Result 2.1. For any m x m symmetric nonnegative definite matrix E with elements 0 ), the

Cholesky algorithm (2.4) produces E() in (2.3), i = 2,... , m, as the unique (generalized) Schur
complement of the leading principali - 1 square submatrix in E. The algorithm then proceeds to
find the Cholesky factor, see (2.3), of this generalized Schur complement.

This is a simple and clean theoretical result, involving no generalized inverses, just a variant
of the Cholesky factorization. It provides a strong argument for using this Cholesky factor as a
powerful theoretical tool in this area.

3. Covariance Matrices and Correlation Coefficients

If z = .. )T is a vector of random variables with x (a, E), which indicates z has
mean

E[]z]=a=(, ... a,,)T (3.1)

and covariance
E[(x - a)(x - a)T] = = (a,,), (3.2)

then a good measure of the degree of dependence between C, and Ci is their covariance standardized
by their standard deviations. This is called their correlation coefficient

pij= = - )(- (3.3)

{E[(& - o,)]E[(C1 - a,)2]}1/2 o1/2 ,/2(

Thus all the correlation coefficients are obtained directly from the covariance matrix.

If z and E are partitioned conformably

Z 2 E 21 E22

and E is nonsingular, then Anderson [1], p. 41 states that the partial covariance of X2 given zl
can be defined as the covariance of the residual of z 2 from its regression on z,. Anderson [11 §2.5
shows that this is just the Schur complement of Ell in E, which we have shown is E() in (2.5), the

elements of which are the oi., produced in (2.4). The partial correlation coefficients are defined
in terms of the elements of this partial covariance matrix, just as was done in (3.3) for ordinary
correlation coefficients.

Definition 3.1. The partial correlation between Ci and CA, j, k = i,..., m, given C,, ... , C_, is
defined to be

and is a measure of dependence between ey and Ck when the effects of el, ~. have beenremoved.

The work here has shown that a numerically reliable and efficient way of obtaining these is to

use (3.5) once the oI ) have been obtained directly from the Cholesky factorization (2.4). If z also
has a multivariate normal distribution, so that z ( (a, E) completely determines the distribution,
then Anderson [1) §2.5 shows that E() is the conditional covariance of z 2 given zl, and then we
can call (3.5) a conditional correlation.I5



The nonzero condition in (3.5) automatically holds when E is nonsingular, but we have included
it for full generality. If E is singular and ao' = 0, then it is straightforward to show a) = o -

) = 0,
k = i,..., m, and p(', is undefined.

Although this is not a statistical paper, we will now show that the generalized Schur comple-
ment E(W) is the partial covariance matrix of z2 given zl, when Ell is singular. We do this to show

*the full generality of the results here, and to illustrate how easy it is to prove such results just using
the Cholesky factorization (2.4) which provides E(W) and its factors so elegantly.

If z - (a, E) and the Cholesky factor U of E - UTU is as in (2.4), then we may remove the
zero rows of U to obtain CU of full row rank and such that E = 0 T CT. It follows from Anderson [11,
pp. 32-33 that with probability 1

X=I ,) a, + ( 1 v)=a+CITV, V-_,(0,I1),

where O' and OT each have full column rank. If z is given (such x, must lie in the linear variety
al + T 'v1, for some vi, to be consistent) then v, is completely determined, and

Z2 =b 2 + 2
2 V2 0, b = a2 + U12vI given, V2 - (0, 1).

Now using the superscript + to denote the Moore-Penrose generalized inverse,

= a2 + CT (UT)+(XI - al)

can be defined as the regression of z 2 on z ([1], p.41), so the residual 02Tv 2 - (0, E()), and the
partial covariance matrix is E(').

It follows that (3.5) can also be used to define the partial correlation coefficients when El
is singular, and so the Cholesky factorization (2.4) produces the partial covariance matrices r'(0
and its factors, see (2.3), and then the partial correlation coefficients are given by (3.5), for any
symmetric nonnegative definite covariance matrix E = (o)).

4. Angles Between Vectors, and Orthogonal Transformations

We now consider some results which at first glance seem unrelated to §§2 and 3. We exhibit
the connection at the end of §5.

We have defined the angle e(a, b) between two nonzero vectors a, b E W to satisfy
* aTb

cos e(a, b) = 11a11211b112' 0 < e(a,b) < r. (4.1)

If either a or b is zero the angle is not defined. We will be interested in orthogonal transformations,
and the following obvious result indicates how angles are preserved.

Lemma 4.1. For any matrix Qi(n x r) such that QTQ1 = 1, and any nonzero vectors c,d E R"

e(Qlc,Q d) = e(c, d). (4.2)

The next result exhibits a more interesting connection between orthogonal transformations
and angles, and provides an alternative to (4.1) for obtaining angles.

6@4°
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Theorem 4.1. Let a, b E K' be nonzero vectors, and (.a b) = QIU a QR factorization with

QT (ab () = AlA2) Allu > 0, M22 ! 0, (4.3)

and Q = (Qi Q2) an n x n orthogonal matrix. Consider the orthogonal rotation through 0 which
transforms U to lower triangle, with

( o80 -osin) 12 0 2 1

sin 0 coo0 )( 2 122' A 2 2 = (142 + P22)'2 > 0. (4.4)

Then the angle between a and b may be obtained from either

cos e(a, b) = Sin = A 12 /A 22 , (4.5)
sin 9(a, b) = COS 0 = A2 2 /\ 22 . (4.6)

TLe proper of the two solutions for (4.6) is retrieved by having the angle e(a, b) satisfy sign(f -
49(a, b)) = sign(P12).

/ Proof. From Lemma 4.1, (4.1), and (4.4)
P11P12 -_ P12!=si

cose(a, b) = + .P2)1/2 - 1 in q6,
M'1164112 + A21l2 A22 =a

the last step coming from multiplying (4.4) by the transpose of the rotation, which also gives -22=
-k2 cos 4, showing that cos0 >_ 0. But from (4.5) sin 4(a, b) = :cos , whereas the definition (4.1)

ensures sin e(a, b) 0 and so (4.6) follows.

To illustrate that this is a result of general computational value, consider floating point com-
putations with precision 6, so that if I'yI < 6 the computed result of adding y to 1 is fl(1 + -y) = 1.
With

(a 6)= (a ' qacomputer number, Y 2 <5

computing (4.1) or (4.5) would give

fl (cose(a,b)) = 1,

leading us to believe e(a, b) = 0. The alternative (4.6) would give

fl(sine(a,b)) = ',

telling us e(a, b) f ni, which is far more desirable.
Note, that by following the work of Wilkinson [13] the computations for cos e(a, b) in (4.1) and

(4.5), and for sin e(a, b) in (4.6), can be shown to be numerically stable, so if we want the cosine
or sine then these give all the accuracy we can expect. However I coa 01 o 1 is relatively insensitive
to small changes in E, and if we want 0 in such cases then we should avoid (4.1) and (4.5). On the
other hand Isin O f 1 is also relatively insensitive to small changes in 0, and (4.6) should not be

used to compute E in such cases. Replacing b by (tq 1 )T in the above example will illustrate this.
In summary, if we want to compute 0(a,b) we could use (4.1) or (4.5) when I cosO(a,b) < 2-1/2

7
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and (4.6) otherwise. If the choice is between (4.5) and (4.6) only, this criterion would lead to (4.5)
when 10l21 -5 022 and (4.6) otherwise.

Note that computing (4.1) takes about 3n flops (for a definition of 'flop' see [8], p. 32), while
computing (4.3) takes about 4n flops at best, [8], p. 148.

In the remaining sections we will only discuss the computation of cosines, and so either (4.1) or
(4.5) will suffice. However, we will present theory related to angles in general, so anyone intending
to compute these actual angles can use the results of this section.

5. The QR Factorization and Angles Between Projected Vectors

Suppose A(n x m) = (a, ... a,,,), which need not have rank m. Here we will partition
A = (Al A 2 ) with Ai(n x i - 1), and describe how the QR factorization produces projections of
columns of A2 onto the space R(A 1 ) ± . We will later show that partial correlation coefficients are
the cosines of angles between such projections when E = ATA.

Suppose Q(n x n) = (Qi Q2) is an orthogonal matrix such that

A=(A, A 2 ) = (Q 1  Q2)( O  F), (5.1)

where E(q x i - 1) is of rank q. This could be computed by the first q steps of the QR factorization,
or the first q steps of the modified Gram-Schmidt (MGS) algorithm (see [8], Chapter 6), but we
only require the zero block and the full row rank of E, giving

Al = QIE, A 2 = QIF + Q 2G.

Let us define the two symmetric idempotent matrices

p,' = QIQT, P =QT
~ 1=~IT P 2 =Q2QT-

Since E has full row rank, R(Ai) = R(Q1 ) = R(P) so P1 is the orthogonal projector onto R(A1 ),

P2 --- I -1 is the orthogonal projector onto R(Al)', and

P2A 2 = Q2G = A2 - QIF (5.2)

is the projection of the columns of A2 onto R(A1 )± . That is, the columns of Q 2G correspond to
the columns of A 2 after the dependence on a,, ... , ai-j has been removed, and it is the correlation
between these that is of interest in defining partial correlations. We first consider the angles between
these vectors.

Definition 5.1. Let hi be the projection of aj onto the space orthogonal to a,, ... , a,-1, where
= (a, ... am). We define e)' (A) to be the angle between any pair of nonzero such hj and

hi., i, k = ,.,m.

If we write G = (gi ... gi) we have hi = Q2g,, and from Lemma 4.1

e?(A)= e(Q2gj,Q 2gk) = e(g,,gk) if Ifg19jJ12gkJl2 0. (5.3)

The angle is undefined if either projection is zero. It follows that these angles are just the angles
between columns of G in (5.1).

Lemma 4.1 in §4 described an invariance of angles under certain transformations, and the
following result extends this.

8.



Lemma 5.1. For any matrix Qi(p x n) such that QTQ = I, if B = (bi ... bn) = QA then

8e')(B) is defined if and only if e',:(A) is defined, and in this case

e()(B) = e (QIA) = @'(A), j,km.

Proof.

B= 1 A4=Q41 Q(E F)
has the same G as the orthogonal factorization in (5.1) so the result follows from (5.3).

Since (5.3) only depends on the full row rank of E and the zero block in (5.1), it is unaffected
by orthogonal transformations applied to the left of (E F), or of G. In particular, orthogonal

transformations of the form (4.3) and (4.4) could be used on G to find the 1(A).
Note that q steps of the QR factorization for computing (5.2) will provide Q2 and G separately,

whereas MGS only provides Q2 G when it is stopped after q steps. From (5.3) we see either will
do for computing angles. In [8], Chapter 6 it is shown that for a complete QR factorization the
Householder and fast Givens algorithms each require about m 2 (n - m/3) flops, while MGS requires
about m 2 n. Often n >> m and there will be little difference in cost, but we would generally choose
the QR factorization for its excellent numerical properties.

We now give the result which relates the work in §§2 and 3 with that in §§4 and 5 so far, see

[5], and motivated the lengthy title for this paper.
Theorem 5.1. If

ATA - E - ()), (5.4)

then for = 1,...,m and j, k m

pwe rie cos. r (A),

when either of these is defined. Here the p, are defined by (3.5), where the o(') are elements of the

p Schur complement E(W) of the leading principal (i- 1) x (i- 1) submatrix of E, and arise naturally

in the Cholesky factorization (2.4) of E. The 8(.)(A) are as in Definition 5.1 above.

When E is a scalar multiple of the (population or sample) covariance matrix of some distribu-

tion, these p~i) are the corresponding partial correlation coefficients, see Definition 3.1. As a result
partial correlation coefficients can also be defined in terms of angles between projected vectors.
These projected vectors arise naturally from the QR factorization of A.

Proof. The p( in (3.5) are a function of the elements - ) of E(') = U2TU 22 obtained from the

Cholesky factorization (2.4),

EUTU( U {i u1  ;u 12  ) UpIU 11 is (i- 1 Xi- 1), (5.5)

4 where these products are unaffected if all the zero rows are removed from U, so we can henceforth

assume Ui1 has full row rank.

In (5.3) we showed that 4()(A) is the angle between columns gi and gk of G, where from (5.4)

and (5.1)
~A A=(ETE TF ' (5.6)

E Z= AA= FTE FTF+GTG  ,

9
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where E(q x i - 1) is of rank q, so that F = EC, C = ET(EET) -F.

We now equate (5.5) and (5.6) to show GTG = U2U 2 2 . The (1, 1) and (1,2) blocks give

UI I = (Ul IUIT) -U 1 E TE

U1 2 = (UUT)- 1 UnE T F = Un1 C

so that
UjU 1 2 - CTUTUIIC = CTETEC = FTF,

and the desired result follows from equating the (2,2) blocks. This shows gTgk = o.?, and combining
(5.3), the definition of angle (4.1), and (3.5), proves the theorem.

This result is essentially based on the uniqueness relation between the Cholesky factor of ATA
and the upper triangular matrix in the QR factorization of A. For full column rank A the proof
would be briefer, but we have given the result in its full generality.

To summarize one practical advantage of this theorem, if we are given A where we know
= ATA is the sample or population covaiance matrix of a distribution, then we can compute the

corresponding partial correlation coefficients p',) directly from A, first by carrying out a QR-like

factorization of the form (5.1), then finding cosEO(gj,gk) using either (4.1) or (4.3) with (4.5).

6. Observations of Random Variables

Suppose we have m random variables CI, ,, and for j = 1,... m, zj = (Cij ... Cj)T

is a vector of n observations of Ci. Then for j = 1,... m

a,=x-- 1e(xTe), e=(1 ... 1)T, (6.1)
n

is xj adjusted for its mean, and
*1

E = _I AT A, A = (a, ... a,),
(n-i1)

is the usual estimate for the covariance matrix of the distribution of these random variables, and
is called the sample covariance matrix. From this we could compute the sample partial covariance
matrices and sample partial correlation coefficients exactly as in §3, and these would be estimates of
the corresponding population values. However it is numerically preferable to work with A directly,
and so these could also be computed as described in §§4 and 5.

A difficulty with this approach is that if we obtain (' n+1,1 ... ,+i,,), a new observation
for each variable, and wish to update our values, then every mean has to be adjusted and every
element of A is changed, as well as having a new row added. To avoid this, note that (6.1) can be
written

aj = Pxj, P = I- -ee
n

where P is symmetric and idempotent, and is the orthogonal projector onto the space orthogonal
to e. But from (5.1) and (5.2), one step of the QR factorization

( X ) = qI Q 2 ) ( 0 B ) ,= ... .

gives a matrix Q 2 B whose columns are the projections of the columns of X onto the space orthogonal
to e, and so are the required aj. Now since A = PX = Q 2QjX = Q 2 B, and all the values we

10



want can be found from A A = BTB, we can work with B instead of A, and continuing the QR
factorization of (e X ) will produce everything needed in §5.

This is not just a nice way of effectively adjusting the zi for their means. If we already have
the QR factorization of (e X), we can add the new row (1 +ii ... +,to (e X) and
update the factorization using standard efficient and numerically reliable techniques, see for example
[8] §12.6. We can also update the factorization efficiently when we discard a row of (C X), while
adding or deleting columns (corresponding to random variables) is particularly easy. We could also
update the Cholesky factor of given E when a row and corresponding column is added or deleted,
see also [7, 10]. It is a straightforward exercise to compute the new partial correlation coefficients
following such computations, however there is a danger of numerical errors in the case of discarding
a row.

7. Some Computational Considerations

So far we have considered computing p'.), the partial correlation coefficient of Cj and Ck,
keeping C1, .. , fixed where j, k = i,... ,m; and we have seen how to compute these for the
fixed ordering i -,...,m. Of course any initial ordering of the columns of X in §6 or A in §5 or
any symmetric ordering of columns and rows of E could be chosen, and during the factorizations
pivoting can always be used on the unfactored part to determine which coefficients will be produced
next.Let us write ps where S is some set of indices, to denote the partial correlation coefficient of

C, and C. keeping &t fixed for all k E S. When several lots of such coefficients are required it is
usually the case that we want ps., k - 1,2,... ,t, where S CS2 C... c St. In this case we can
order columns of A for example to give

(A, A 2  ... At At+,)=A

where (A, ... At) has just those columns with indices in Sk, k = 1,...,t and At+1 contains
the remaining columns. Applying the QR factorization to A will allow us to compute everything
in the correct order.

If we already have upper triangular U in A = Q1 U (or E - UTU), and we wish to compute
values for a different ordering, we can always reorder columns (and rows) and update U to produce
the required form. For example suppose U = (u, ... us) is the nonsingular upper triangular 5 x 5
matrix obtained from the QR factorization of A, and we now want to compute pSs with S = (2, 4).
We could arrange the columns and transform (u2 U4 ul us) by eliminating elements (2,1),
(4,2) and (3,2):

IE F

and p,,s is the cosine of the angle between the two columns of G. This could be found using (4.1),
or by applying rotations as in (4.3) and (4.4), see (4.5).

We would tend to use the above approach to maintain as much numerical information as
possible when we initially know A or X, but when we are given E, it could be worth considering
more efficient ways of updating U, see [7]. Note that after i - I steps of the Cholesky algorithm

(2.4) all the a are at hand, and so all the p(') in (3.5) can be computed in rn - i square roots and
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(m-i)(m-i+ 1)/2 multiplications and divisions. On the other hand if we use the QR factorization,
or already have

U= (E F)0 G '

we still need to find the cosines of the angles between the columns of G. If G is n - i + I x rn -i +1
and full this would take (n - i + 1)(m - i+ 1)(m - i)/2 flops to compute all the 9T9 in (4.1). The
cost would be significantly less if n >> n and G was already upper triangular, tut it would still
be on the order of (m - i)3, and so this QR approach is inherently more costly than the Cholesky
approach if many partial correlation coefficients are required. However there are situations where
the loss of accuracy in forming ATA can be significant, as we now show, see also [5).

Example. Suppose we are given

-11 0
A=1 1 -1 -2c

A--

where c is non-zero, and that the partial correlation

(2)
(2) o'23

(2) (2)
U 22  3

is to be determined. The corresponding covariance matrix ATA is
1 + 2  

1 + 2  
0

= -1 + C 1 + 2 1 2
0 2c 1 +3

*nd in exact arithmetic, one has

• c(2) ,  ,(2) l+ 2 (1+C2)2 U(2) 1+ 3C2

23 22 +C 2  33

so that
(2) = sign() + .

P23 =ine)1 + 3(2

However, in finite precision floating point arithmetic and with e chosen to be sufficiently small
(2c < /12, where b is the floating point precision so that the computed fl(1 -4C2) 1), the
computed quantities turn out to be

.fl~r P 1_
0 2 cVj.

and
- 2 (2) (2)

023 -, 1~ 0, 33

2 so that is not a finite number.sthtp23
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Performing a QR decomposition of the matrix A yields a 4 x 3 matrix Q with orthonormal
columns and a 3 x 3 upper triangular factor

/1 +C2 -1 +c 0
U .~.. 0 21el sign(e (1+

0 0 1I l/2(1 + C2)

in exact arithmetic. In finite precison arithmetic with the same choice of c as before, one has

(1 -1 0
f(U)= 21cI sign() ,

and the sine of the rotation that transforms the submatrix

(21l sign(c)j

0 NF21 cI)

to lower triangular form is equal to fi(p2)) = sign(c), the exact value to machine precision.

8. Conclusions
In this paper we have shown several relationships between theoretical objects and algorithms,

and used these to suggest approaches to numerical computations. Several different topics have been
considered, and it is important to see how they all fit together.

It is a standard result that the Cholesky factors of the Schur complements E(') of all leading
principal submatrices of symmetric positive definite E are produced by the Cholesky factorization
of E. It is probably less well known (at least we know of no reference) that not only the Cholesky
factors, but also the Schur complements themselves are produced directly (that, without having
to form the products of their factors) with the correct organization of the Cholesky algorithms,
see (2.4). We have extended this result to show it also holds for singular E when we consider the
generalized Schur complements EO(). This is summarized in Result 2.1.

When E = (aii) above is the nonsingular covariance matrix of a vector of random variables
z - (a, E), then pii = a,/(,,oaii)1 /2 are the correlation coefficients. The Schur complement

= ( '-') , , k = i,. .. ,m of the leading (i - 1) x (i- 1) submatrix of E is called the partial
covariance of elements i tc - of z, given the first i - 1 elements. The corresponding partial

correlation ~ ~ ~ (i cofiint r he.W a /(OMV.~(i))1/2 Since the i '
correlation coefficients a-i P, ( j) - ,, / are given directly by the

Cholesky algorithm (2.4), the can be computed from them. We have shown that even when
E is singular, the generalized Schur complement E(Y) given by the Cholesky algorithm (2.4) is still
the required partial covariance matrix, and so the partial correlation coefficients can be computed
as indicated above whenever 02 crAk is nonzero. If x has a multivariate normal distribution these
partial covariances and correlations are also conditional covariances and correlations.

If A is available where E = ATA, then the upper triangular Cholesky factor U of E is given by
the QR factorization of A. It was shown in [5] how partial correlation coefficients could be computed
from U without forming UTU. In §5 we rephrased those results to emphasize that partial correlation
coefficients are the cosines of angles between vectors appearing in the QR factorization of A. As
a result, partial correlation coefficients for different sets of given elements of the random vector x
can be obtained by permuting the columns of A and updating the QR factorization, see [5]. Again
this did not require E to be nonsingular.
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The two main sequences of relationships have therefore been, for a (possibly singular) covari-
ance matrix E - ATA:

1. Cholesky factorization of E, as implemented in (2.4)

(generalized) Schur complements of leading submatrices of E
* partial covariance matrices
e partial correlation coefficients.

2. QR (or MGS) factorization of A

* projections of later colurms of A onto spaces orthogonal to earlier columns
* cosines of angles between these projections
* partial correlation coefficients.

* Of course both the Cholesky factorization of E and the QR factorization of A produce Cholesky
factors of each leading principal submatrix of E and of the corresponding (generalized) Schur
complement, but these are well known and not part of the above sequences.

When the population covariance matrix for the random vector z is not available, and A is
obtained from n observations of each of the random variables as shown in §6, then E = (n-1)-ATA
is the sample covariance matrix. The sample partial covariance matrices are the generalized Schur

* complements of the principal submatrices of E, and the sample partial correlation coefficients can
be found from the Cholesky factorization of E or the QR factorization of A, just as was described
for the population partial correlation coefficients. In this case however, we may obtain further
observations on each random variable, and §6 indicated how the computations may be arranged
to include these, and update the factorization and corresponding partial correlation coefficients.
Ways of computing different sets of partial correlation efficiently were considered in §7.

Reliable numerical computation has been a guide in our search for connections and algorithms
here, and in §4 we made some general observations on computing angles between vectors, and the
possible effect of finite precision. More importantly it was pointed out in [5] and repeated in §7
here, how working with the QR factorization of A rather than the Cholesky factorization of ATA
can be numerically crucial in some cases of computing partial correlation coefficients, even though
the AT A approach may be faster.

In a forthcoming paper will be presented a derivation of this QR approach from the parallel
implementation of an algorithm for solving symmetric positive definite linear systems by hyperbolic
rotations, as shown in [4].
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